Lineare Substitution, logarithmische Integration

Mittwoch, 5. Februar 2020 21:04

Erarbeitung 1

	V		
Funktion f	f(x)= sin (2x)	$f(x) = (2x-4)^3$	f(x) = g(mx+c)
Ableitung f'	$f'(x) = 2\cos(2x)$	$f'(x) = 3 \cdot 2(2x-4)^2$	$f'(x) = m \cdot g'(mx + c)$
Stammf. F	$\mathcal{F}(x) = -\frac{1}{2}\cos(2x)$	$T(x) = \frac{1}{2} \cdot \frac{1}{4} (2x-4)^4$	$\mp(x) = \frac{1}{m} \cdot G(mx + c)$
Integral	$\int_{0}^{\frac{\pi}{4}} \sin(2x) dx$ $= \left[-\frac{1}{2}\cos(2x)\right]_{0}^{\frac{\pi}{4}}$	$\int_{2}^{3} (2x-4)^{3} dx$ $= \left[\int_{2}^{4} (2x-4)^{4} \right]_{2}^{3}$	$\int_{a}^{b} g(mx+c) dx$ $= \left[\frac{1}{m} G(mx+c)\right]_{a}^{b}$
	$= -\frac{1}{2} \cdot D + \frac{1}{2} \cdot A = \frac{1}{2}$	$= \frac{1}{8} \cdot 16 - \frac{1}{8} \cdot 0 = 2$	

Erar beitung 2

Funktion f	$\int f(x) = \ln(x^2 + 3x)$	f(x) = ln(sin(2x))	f(x) = ln(g(x))
Ableiting J'	$f'(x) = \frac{1}{x^2 + 3x} \cdot (2x + 3)$	$f'(x) = \frac{1}{\sin(2x)} \cdot 2\cos(2x)$	$f'(x) = \frac{1}{g(x)} \cdot g'(x)$
	$=\frac{2x+3}{x^2+3x}$	$=\frac{2\cos(2x)}{\sin(2x)}$	$= \frac{g'(x)}{g(x)}$

Furshion 1	$f(x) = \frac{2x}{1+x^2}$	$f(x) = \frac{6e^{2x}}{5 + 3e^{2x}}$	$f(x) = \frac{g'(x)}{g(x)}$
Stammf F	$F(x) = ln(1+x^2)$	F(x)= ln(5+3e ^{2x})	F(x) = ln(g(x))

Ver mutung: Für $f(x) = \frac{1}{x}$ mit $x \ge 0$ gilt $F(x) = \ln(|x|)$. Prüfen: $F(x) = \ln(-x)$ für $x \le 0$ $F'(x) = \frac{1}{x} \cdot (-1) = \frac{1}{x} = f(x)$

Verbesserte Regel: Die Stammfunktion der Funktion
$$f$$
 mit $f(x) = \frac{g'(x)}{g(x)}$ ist $f(x) = \ln(|g(x)|)$, falls $g(x) \neq 0$.

Aufgaten

1. a)
$$\int_{0}^{2\pi} 3e^{2x-1} dx = \left[3 \cdot \frac{1}{2}e^{2x-1}\right]_{0}^{1} = \frac{3}{2}e^{1} - \frac{3}{2}e^{-1} = \frac{3e}{2} - \frac{3}{2}e^{1}$$

$$\int_{0}^{2} (3-2x)^{2} dx = \left[-\frac{1}{2} \cdot \frac{1}{3} (3-2x)^{3} \right]_{1}^{2} = -\frac{1}{6} \cdot (-1)^{3} + \frac{1}{6} \cdot 1^{3} = \frac{1}{3}$$

c)
$$\int_{1}^{2} \frac{1}{4x+1} dx = \left[\frac{1}{4} \cdot \frac{2}{3} \left(4x+1\right)^{\frac{3}{2}}\right]_{0}^{2} = \frac{1}{6} \cdot 9^{\frac{3}{2}} - \frac{1}{6} \cdot 1^{\frac{3}{2}} = \frac{27}{6} - \frac{1}{6} = \frac{13}{3}$$

d)
$$\int_{0}^{3} \frac{6}{2x+5} dx = \left[6 \cdot \frac{1}{2} \ln (2x+5)\right]_{0}^{3} = 3 \ln 11 - 3 \ln 5$$

e)
$$\int_{-\frac{\pi}{4}}^{2} 3 \cdot \cos(\pi x) dx = \left[\frac{3}{\pi} \sin(\pi x) \right]_{\frac{\pi}{4}}^{2} = \frac{3}{\pi} \cdot 0 - \frac{3}{\pi} (-1) = \frac{3}{\pi}$$

$$\int_{4}^{10} \ln\left(\frac{1}{3}x - \frac{1}{3}\right) dx = \left[3 \cdot \left(\left(\frac{1}{3}x - \frac{1}{3}\right) \cdot \ln\left(\frac{1}{3}x - \frac{1}{3}\right) - \left(\frac{1}{3}x - \frac{1}{3}\right)\right]_{4}^{10} \\
= \left[\left(x - 1\right) \cdot \ln\left(\frac{1}{3}x - \frac{1}{3}\right) - \left(x - 1\right)\right]_{4}^{10} \\
= \left(9 \cdot \ln 3 - 9\right) - \left(3 \cdot \ln 1 - 3\right) \\
= 9 \cdot \ln 3 - 6$$

2. a)
$$\int_{0}^{1} \frac{2e^{x}}{2e^{x}+1} dx = \left[\ln(2e^{x}+1) \right]_{0}^{1} = \ln(2e+1) - \ln 3$$

b)
$$\int_{1}^{2} \frac{2x+2}{x^{2}+2x+3} dx = \left[\ln(x^{2}+2x+3) \right]_{1}^{2} = \ln 11 - \ln 6$$

c)
$$\int_{e^2}^{e^4} \frac{1}{x \cdot \ln(x)} dx = \int_{e^2}^{e^4} \frac{\frac{1}{x}}{\ln(x)} dx = \left[\ln(\ln(x)) \right]_{e^2}^{e^4} = \ln 4 - \ln 2$$

3. a)
$$\int_{0}^{4} \frac{x}{x^{2}+4} dx = \int_{0}^{4} \frac{1}{2} \cdot \frac{2x}{x^{2}+4} dx = \left[\frac{1}{2} \ln(x^{2}+4)\right]_{0}^{4} = \frac{1}{2} \ln 20 - \frac{1}{2} \ln 4$$
b)
$$\int_{0}^{2} \frac{x^{2}}{1-8x^{3}} dx = \int_{0}^{2} \frac{1}{24} \cdot \frac{-24x^{2}}{1-8x^{3}} dx = \left[-\frac{1}{24} \ln\left(1-8x^{3}\right)\right]_{1}^{2}$$

$$= -\frac{1}{24} \cdot \ln\left|-63\right| + \frac{1}{24} \cdot \ln\left|-7\right| = -\frac{1}{24} \ln 63 + \frac{1}{24} \ln(7)$$
c)
$$\int_{0}^{\frac{1}{3}} \frac{-\sin(\pi x)}{\cos(\pi x)} dx = \int_{0}^{\frac{1}{3}} \frac{1}{4} \cdot \frac{-\sin(\pi x)}{\cos(\pi x)} dx = \left[\frac{1}{\pi} \ln(\cos(\pi x))\right]_{0}^{\frac{1}{3}}$$

$$= \frac{1}{\pi} \ln\left(\frac{1}{2}\right) - \frac{1}{\pi} \ln 1 = \frac{1}{\pi} \ln\left(\frac{1}{2}\right)$$