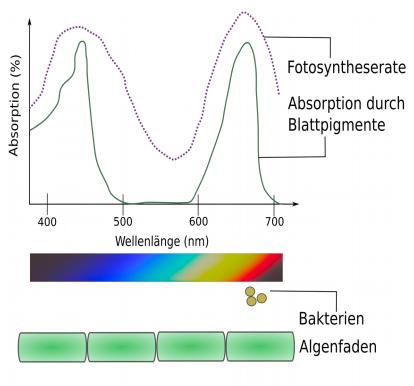
# Der Engelmannsche Bakterienversuch

## **Grundlagen:**

## Farbspektrum und Absorptionsspektrum des Chlorophylls

### Aufgaben:


- 1. Erstellen Sie auf der Grundlage des Versuchs zur Lichtabsorption durch gelöstes Chlorophyll Definitionen für die Begriffe Farbspektrum und Absorptionsspektrum, indem Sie die falschen Satzbausteine durchstreichen. Ergänzen Sie dann die nötigen Satzzeichen und passen Sie die Groß-/Kleinschreibung ggf. an.
- 2. Erklären Sie auf der Grundlage des Absorptionsspektrums des Chlorophylls, weshalb wir Pflanzen als grün wahrnehmen.

| Farbspektrum: | Photonen bestimmter<br>Wellenlängen werden<br>absorbiert, wenn Licht<br>durch Materie dringt | es kann durch Brechung<br>eines weißen Lichtstrahls<br>an Prisma sichtbar<br>gemacht werden                   | der Lichtstrahl wird<br>Bereiche gleicher<br>Wellenlängen<br>aufgespalten und<br>erscheint als Abfolge<br>einfarbiger Banden |
|---------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|               | der für den Menschen<br>sichtbare Anteil des<br>elektromagnetischen<br>Spektrums             | Licht dieser<br>Wellenlängen fehlt im<br>Farbspektrum, die<br>entsprechenden Banden<br>erscheinen dann dunkel | im Absorptionsspektrum<br>des Chlorohylls sind<br>bestimmte<br>Wellenlängenbereiche<br>(rot und blau) nicht mehr<br>zu sehen |

| Absorptionsspektrum: | der für den Menschen<br>sichtbare Anteil des<br>elektromagnetischen<br>Spektrums | es kann durch Brechung<br>eines weißen Lichtstrahls<br>an Prisma sichtbar<br>gemacht werden | im Absorptionsspektrum des Chlorohylls sind bestimmte Wellenlängenbereiche (rot und blau) nicht mehr |
|----------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                      | Photonen bestimmter<br>Wellenlängen werden<br>absorbiert, wenn Licht             | Licht dieser<br>Wellenlängen fehlt im<br>Farbspektrum, die                                  | zu sehen  der Lichtstrahl wird  Bereiche gleicher  Wellenlängen                                      |
|                      | durch Materie dringt                                                             | entsprechenden Banden<br>erscheinen dann dunkel                                             | aufgespalten und<br>erscheint als Abfolge<br>einfarbiger Banden                                      |

### Das Wirkungsspektrum der Fotosynthese

Im Engelmannschen Bakterienversuch wird die Fotosyntheserate bei Belichtung von pflanzlichen Zellen mit Licht verschiedener Wellenlängen näherungsweise bestimmt. Der Nachweis erfolgt indirekt über Bakterien, die sich aktiv dorthin bewegen, wo eine hohe Sauerstoffkonzentration vorliegt. Als fotosynthesefähiger Organismus dient eine fadenförmige Grünalge. Für das Experiment wird ein Lichtstrahl durch ein Prisma gebrochen und das entstehende Spektrum auf den Algenfaden, der in einem bakterienhaltigen Medium liegt, projiziert (vgl. Abbildung 1). Der Versuch zeigt die Korrelation der Fotosyntheserate mit der Absorptionsfähigkeit bestimmter Wellenlängen durch Chlorophyll. Die Fotosyntheserate in Abhängigkeit von der Wellenlänge des Lichts wird als *Wirkungsspektrum* der Fotosynthese bezeichnet.



Grafik: A. Theil-Schiebel

Abbildung 1: Engelmannscher Bakterienversuch und Wirkungsspektrum der Fotosynthese

#### Aufgaben

- 3. Erklären Sie den Zusammenhang zwischen Fotosyntheserate und Sauerstoffkonzentration.
- 4. Zeichnen Sie die zu erwartende Verteilung der Bakterien am Algenfaden nach Projektion des Farbspektrums ein (ergänzen Sie weitere Bakterien).
- 5. Beschreiben Sie das Versuchsergebnis.

# Der Engelmannsche Bakterienversuch - Lösungen

## **Grundlagen:**

## Farbspektrum und Absorptionsspektrum des Chlorophylls

### Aufgaben:

- Erstellen Sie auf der Grundlage des Versuchs zur Lichtabsorption durch gelöstes Chlorophyll Definitionen für die Begriffe Farbspektrum und Absorptionsspektrum, indem Sie die falschen Satzbausteine durchstreichen. Ergänzen Sie dann die nötigen Satzzeichen und passen Sie die Groß-/Kleinschreibung ggf. an.
   Siehe Tabellen
- 2. Erklären Sie auf der Grundlage des Absorptionsspektrums des Chlorophylls, weshalb wir Pflanzen als grün wahrnehmen.

Grünes Licht (bzw. Photonen der entsprechenden Wellenlänge) wird vom Chlorophyll praktisch nicht absorbiert, sondern reflektiert, wohingegen rote und blaue Anteile des Lichts absorbiert werden. Nur die Anteile des Spektrums, die nicht absorbiert werden, können vom Menschen wahrgenommen werden.

| Farbspektrum:        | Photonen bestimmter<br>Wellenlängen werden<br>absorbiert, wenn Licht durch<br>Materie dringt  | Es kann durch Brechung<br>eines weißen Lichtstrahls an<br>Prisma sichtbar gemacht<br>werden.                | Der Lichtstrahl wird Bereiche<br>gleicher Wellenlängen<br>aufgespalten und erscheint<br>als Abfolge einfarbiger<br>Banden. |
|----------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                      | Der für den Menschen<br>sichtbare Anteil des<br>elektromagnetischen<br>Spektrums.             | Licht dieser Wellenlängen<br>fehlt im Farbspektrum, die<br>entsprechenden Banden<br>erscheinen dann dunkel  | im Absorptionsspektrum des<br>Chlorohylls sind bestimmte<br>Wellenlängenbereiche (rot<br>und blau) nicht mehr zu<br>sehen  |
| Absorptionsspektrum: | der für den Menschen<br>sichtbare Anteil des<br>elektromagnetischen<br>Spektrums              | es kann durch Brechung<br>eines weißen Lichtstrahls an<br>Prisma sichtbar gemacht<br>werden                 | Im Absorptionsspektrum des<br>Chlorohylls sind bestimmte<br>Wellenlängenbereiche (rot<br>und blau) nicht mehr zu<br>sehen. |
|                      | Photonen bestimmter<br>Wellenlängen werden<br>absorbiert, wenn Licht durch<br>Materie dringt. | Licht dieser Wellenlängen<br>fehlt im Farbspektrum, die<br>entsprechenden Banden<br>erscheinen dann dunkel. | der Lichtstrahl wird Bereiche<br>gleicher Wellenlängen<br>aufgespalten und erscheint<br>als Abfolge einfarbiger<br>Banden  |

### Das Wirkungsspektrum der Fotosynthese

Im Engelmannschen Bakterienversuch wird die Fotosyntheserate bei Belichtung von pflanzlichen Zellen mit Licht verschiedener Wellenlängen näherungsweise bestimmt. Der Nachweis erfolgt indirekt über Bakterien, die sich aktiv dorthin bewegen, wo eine hohe Sauerstoffkonzentration vorliegt. Als fotosynthesefähiger Organismus dient eine fadenförmige Grünalge. Für das Experiment wird ein Lichtstrahl durch ein Prisma gebrochen und das entstehende Spektrum auf den Algenfaden, der in einem bakterienhaltigen Medium liegt, projiziert (vgl. Abbildung 1). Der Versuch zeigt die Korrelation der Fotosyntheserate mit der Absorptionsfähigkeit bestimmter Wellenlängen durch Chlorophyll. Die Fotosyntheserate in Abhängigkeit von der Wellenlänge des Lichts wird als *Wirkungsspektrum* der Fotosynthese bezeichnet.

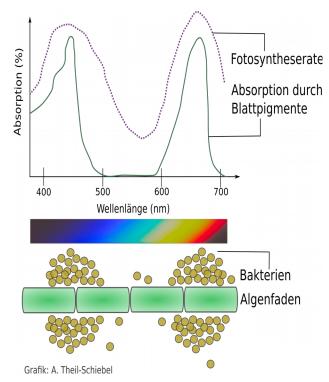



Abbildung 1: Engelmannscher Bakterienversuch und Wirkungsspektrum der Fotosynthese

#### Aufgaben

- 3. Erklären Sie den Zusammenhang zwischen Fotosyntheserate und Sauerstoffkonzentration.

  Je nach Farbe des Lichts, das auf den Algenfaden trifft, wird mehr oder weniger Licht vom Chlorophyll absorbiert.

  Je mehr Licht absorbiert wird, desto mehr Energie steht für die Fotosynthese zur Verfügung. Je höher die Fotosyntheserate, desto mehr Sauerstoff als eins der Produkte der Fotosynthese wird an dieser Stelle produziert, also liegt dort eine höhere Sauerstoffkonzentration vor.
- Zeichnen Sie die zu erwartende Verteilung der Bakterien am Algenfaden nach Projektion des Farbspektrums ein (ergänzen Sie weitere Bakterien).
   Siehe Abbildung
- 5. Beschreiben Sie das Versuchsergebnis.

Die Bakterien bewegen sich aktiv zu Orten mit hoher Sauerstoffkonzentration. Je nach Farbe des Lichts, das auf den Algenfaden trifft, produziert dieser mehr oder weniger Sauerstoff, worauf sich die Bakterien mehr oder weniger zahlreich an den betreffenden Stellen ansammeln. Die Anzahl der angesammelten Bakterien dient als ungefähres Maß für die Fotosyntheserate, die der Sauerstoffproduktionsrate entspricht. Der Versuch zeigt, dass die höchste Fotosyntheserate ungefähr mit den Bereichen der Absorptionsmaxima des Chlorophylls korreliert.